BIT 0006-3835/01/4104-0693 $16.00
2001, Vol. 41, No. 4, pp. 693-711 © Swets & Zeitlinger

COMPUTING ROW AND COLUMN COUNTS FOR
SPARSE QR AND LU FACTORIZATION ~

J. R. GILBERT" and X. S. LI® and E. G. NG® and B. W. PEYTON* |

Y Xerow Palo Alto Rescarch Center, 3333 Coyote Hill Road, Palo Alto,
California 94804-1314, USA. email: gilbert@parc.xzeroxz.com

2 Lawrence Berkeley National Laboratory, National Energy Research Scientific Computing
Division, 1 Cyclotron Road, MS 50F, Berkeley, CA 94720, USA. email: ziaoye@nersc.gov

3 Lawrence Berkeley National Laboratory, National Energy Research Scientific Computing
Division, 1 Cyclotron Road, MS 50F, Berkeley, CA 94720, USA. email: EGNgQlbl.gov
*QOak Ridge National Laboratory, Computer Science and Mathematics Division, P. O.
Boz 2008, Oak Ridge, Tennessee 37831-6367, USA. email: peyton@msr.epm.ornl.gov

Abstract.

We present algorithms to determine the number of nonzeros in each row and column
of the factors of a sparse matrix, for both the QR factorization and the LU factorization
with partial pivoting. The algorithms use only the nonzero structure of the input
matrix, and run in time nearly linear in the number of nonzeros in that matrix. They
may be used to set up data structures or schedule parallel operations in advance of the
numerical factorization.

The row and column counts we compute are upper bounds on the actual counts.
If the input matrix is strong Hall and there is no coincidental numerical cancellation,
the counts are exact for QR factorization and are the tightest bounds possible for LU
factorization.

These algorithms are based on our earlier work on computing row and column counts
for sparse Cholesky factorization, plus an efficient method to compute the column
elimination tree of a sparse matrix without explicitly forming the product of the matrix
and its transpose.

AMS subject classification: 65F20.

Key words: sparse QR and LU factorizations, column elimination tree, row and
column counts, disjoint set union.
1 Introduction

Let A be an m x n (sparse) matrix, with n < m, and suppose A has full column
rank n. We consider two nonsymmetric factorizations of A. The orthogonal

*Received January 2001. Revised August 2001. Communicated by Ake Bjdrck.

tThis work was supported in part by the Director, Office of Advanced Scientific Computing
Research, Division of Mathematical, Information, and Computational Sciences of the U. S.
Department of Energy under contract number DE-AC03-765F00098; in part by the Applied
Mathematical Sciences Research Program, Office of Science, U. S. Department of Energy,
under contract DE-AC05-000R22725 with UT-Batelle, LLC; and in part by DARPA under
contract DABT63-95-C-0087.

2 J. R. GILBERT AND X. S. LI AND E. G. NG AND B. W. PEYTON

factorization 1s
R
a=q|]

where () 1s an m x m orthogonal matrix and R is an n x n upper triangular
matrix. The factorization is usually computed by Householder transformations,
and @ is then represented compactly by the “Householder matrix”, which is the
m X n lower trapezoidal matrix H whose columns are the Householder vectors.
Second we consider the triangular factorization with partial pivoting PA = LU}
where L is unit lower triangular, U 1s upper triangular, and P is a permuation
matrix describing row interchanges. We may write this factorization in the form

A=PiL1PoLly---Po_1L, U,

where P; is a permutation that just transposes row ¢ and a higher-numbered
row, and L; is a Gauss transform (a unit lower triangular matrix with nonzeros
only in column ¢). Column ¢ of L has the same nonzero values as column ¢ of
L;, but in a different order. We write L to denote the lower triangular matrix
whose i column is that of L;. Thus L and L have the same nonzero values,
but in different orders within each column.

1.1 Summary of results

Our goal in this paper is to compute the number of nonzeros in each row and
each column of the matrices i, R, L, and U, given only the nonzero structure
of A. The column counts for L are the same as those for L. We also describe a
method (which has been alluded to but not published) to compute the “column
elimination tree” of A, as defined below.

Our algorithms run in time almost linear in the number of nonzeros in A. Thus
they may be used as a fast way to predict and allocate the storage necessary for
the @R or LU factorization. In particular, our work was motivated by the LU
factorization code SuperLU [3, 4, 18]. Both the sequential and parallel versions of
SuperLLU use the column elimination tree to cluster similarly-structured columns
of L for efficiency; the shared-memory parallel version (called SuperLU_-MT) also
uses the tree for scheduling and the predicted column counts to allocate working
storage.

The row and column counts for L and U/ cannot be predicted exactly from
the nonzero structure of A, because the row interchanges during factorization
depend on the numerical values. However, regardless of row interchanges, the
structures of L and U are subsets of the structures of H and R respectively [12,
13]. Therefore the rest of this paper focuses on computing counts for H and R.

We shall make three assumptions about A.

1. Every entry on the main diagonal of A is nonzero. (Every matrix of full
column rank has a row permutation that puts nonzeros on its main diag-

onal [5, 6, 8].)

1In this factorization the matrix A can also be rectangular. Here we consider only square
matrices.

ROW AND COLUMN COUNTS FOR SPARSE QR AND LU 3

2. A has the strong Hall property (that is, its rows and columns cannot be
permuted to yield a nontrivial block upper triangular form [2, 25]).

3. No coincidental numerical cancellation takes place during any arithmetic
on A. (Formally, this is guaranteed in exact arithmetic if the nonzeros of
A are algebraically independent.)

The references [2, 13, 15, 17, 24] contain more complete discussions of these
assumptions and their consequences. These three assumptions imply that (1)
the model we use in this paper for the nonzero structure of H and R is exact,
not merely an upper bound, and (2) the nonzero structures of I and R are the
tightest upper bounds on those of L and U that are possible without knowing
any of the values of the nonzeros of A. Therefore, under these assumptions, our
algorithms compute the exact row and column counts for H and R, and the
tightest possible bounds for Land U.

If A does not satisfy these three assumptions then our algorithms compute
upper bounds on all the row and column counts.

1.2 Relationship to the symmetric problem

The normal equations ATAz = ATh allow Cholesky factorization to replace
nonsymmetric LU (for Az = b) or QR (for full-rank least squares), at least in
theory. The latter factorizations are usually preferable for numerical reasons.
When using LU or R factorization in the sparse case, however, there are many
situations where the nonzero structure of the normal equations matrix ATA and
its Cholesky factor contain useful information about the combinatorial structure
of A and its factors.

A drawback to using the structure of A7A is that it may be expensive to
compute and store. If A4 is sparse, ATA is likely to be much less sparse. Thus
one tries to represent ATA implicitly rather than explicitly. We may think of
the structure of ATA as an undirected graph with a vertex for each column of A
and a cligue (a full submatrix) for each row of A. One could then represent ATA
implicitly by storing only A, and treating each row of A (with & nonzeros, say)
as a clique of &? nonzeros in ATA. This representation would save space but be
expensive in time. To save time as well, we notice that not all the edges of such
a clique are necessary to compute the row and column counts and the column
elimination tree. Thus we do our computations on an intermediate graph that
has only k& — 1 edges, instead of k2, for a row of A with & nonzeros.

We use two different intermediate graphs in our algorithms. The column
elimination tree algorithm in Section 2 substitutes for A7A a graph that has
a path instead of a clique for each row of A. Unlike ATA, that graph is no
larger than A, but it has the same elimination tree as ATA. In Section 3.3,
we compute row and column counts for R by following our earlier algorithm to
compute counts for the Cholesky factor [16] (on this column elimination tree),
but substituting for AT7A a graph that has a star (a subgraph whose lowest-
numbered vertex has an edge to every other vertex in the subgraph) for each
row of A. That graph is no larger than A, but it has the same symbolic Cholesky

4 J. R. GILBERT AND X. S. LI AND E. G. NG AND B. W. PEYTON

factor as ATA. In Section 3.2, we compute row and column counts for H using
A and the column elimination tree, following our earlier characterization [24] of
the structure of H.

1.3 Notation and details

Throughout this paper, we assume some familiarity with elimination trees [21],
supernodes [1, 22], and the use of graphs in sparse matrix computation [7, 9, 11].
The structure of the m x n matrix A, denoted by Struct[4], is defined to be

Struct[A] := {(4,j) | 4i; # 0}.

We use |A| to denote the number of nonzero entries in A; that is, |A| =
| Struct[A]]. Then Struct[ATA] is the set of locations of nonzero entries of ATA
(under our assumption of no exact cancellation). We write

Struct[Ai] == {j | Ai; #£ 0}

and

Struct[A.;] := {¢ | Ai; # 0}

to denote the structures of row ¢ and column j of matrix A.

The graph of ATA, denoted by G(ATA), has the vertex set {1,2,...,n}. For
i # j, there is an edge (7,7) in G(ATA) if and only if the (7, j)-element of ATA
is nonzero. Note that the (i, j)-element of ATA is nonzero if and only if Az; and
Apy; are both nonzero for some k. Consequently, Struct[Ag,] forms a clique in
G(ATA).

The elimination tree of a symmetric positive definite matrix characterizes
dependencies between columns in the Cholesky factorization of the matrix.
Schreiber [26] defined this tree; Liu [20, 21] surveyed its applications in sparse
factorization. The column elimination tree of A is the elimination tree of ATA,
which we denote T(ATA). (Strictly speaking, the column elimination tree of A
is defined as the elimination tree of a symmetric matrix whose (7, j) entry is
nonzero whenever columns ¢ and j of A share a nonzero row. Since we assume
no coincidental numerical cancellation, ATA has that nonzero structure.)

The vertices of T(ATA) are the integers 1 through n, the same as those of
G(ATA). Vertex i is the parent of vertex j < i in the tree T(ATA) if the first
off-diagonal nonzero entry in column j of the (lower triangular) Cholesky factor
of ATA is in row i.

1.4 Outline of paper

Section 2 shows how to compute the elimination tree T(ATA) using Struct[A]
as input rather than Struct[ATA]. This algorithm has time complexity O(|A| a(|A], n)),
where a(*,*) is the very slowly growing inverse of Ackermann’s function [27];
thus, the algorithm is said to be “almost linear” in the size of its input. Sec-
tion 3 is the heart of the paper: it shows how to compute the row counts and
column counts of H and R using Struct[A] and T(ATA) as input. This algorithm

ROW AND COLUMN COUNTS FOR SPARSE QR AND LU 5

also has time complexity O(|A| a(]A],n)). Section 4 presents experimental re-
sults demonstrating that the algorithms introduced here are much faster than the
straightforward ones based on ATA. Section 5 contains our concluding remarks.

2 Computing the column elimination tree

In this section we describe an algorithm to determine the column elimination
tree T(ATA) of A without forming ATA explicitly. The algorithm runs in time
nearly linear in the number of nonzeros in A, which may be much less than
the number of nonzeros in A”A. While we believe this is the first published
description, Liu [20] alludes to an algorithm with this running time and Matlab’s
built-in function coletree implements such an algorithm [14]. (The Matlab
implementation replaces each row of A by a star, like our QR count algorithm
in Section 3. We expect a path, as we use here, to require slightly less overhead
for tree traversal in the disjoint set union algorithm, but we have not compared
the path and star experimentally.)

We begin by reviewing the symmetric algorithm (whose running time is almost

linear in the number of nonzeros in A7A), and then show how to modify it to
work from A rather than ATA.

2.1 Review: The symmetric algorithm

To construct T(ATA) from Struct[ATA], the symmetric algorithm processes
the rows of ATA one at a time. After processing the first i — 1 rows of ATA, we
have built the elimination tree for the (i — 1) x (i — 1) leading submatrix of ATA.
(This “tree” may actually be a forest with multiple connected components, each
with its own root.) To process row i, we proceed up the tree from every vertex
corresponding to an off-diagonal nonzero entry of row i of the lower triangular
part of ATA until we reach a root. Then we add vertex i to the tree, as well as
edges to make ¢ the new parent of all those roots. The algorithm is summarized
in Figure 2.1.

for row 1 — 1 to n do
Add i to T(ATA);
for column j € Struct[(ATA);,]N{1,2,...,i—1} do
Find root r of the current tree that contains j;
if r # ¢ then
parent(r) — 1,
end if
end for
end for

Figure 2.1: Algorithm for computing the elimination tree T(ATA) from
Struct[ATA].

The most expensive part of the algorithm in Figure 2.1 is the tree traversals

6 J. R. GILBERT AND X. S. LI AND E. G. NG AND B. W. PEYTON

to determine the roots. However, the efficiency of the tree traversals can be
improved by various kinds of path compression, as used in disjoint set union
algorithms [27]. We refer the reader to Liu [19, 21] for details of disjoint set union
in elimination tree algorithms. If balancing and path compression are both used
then the elimination tree algorithm has time complexity O(|ATA| a(|ATA|, n)).
Liu [21] recommends using path compression without balancing; the resulting
algorithm has time complexity O(|ATA| logn), but is faster in practice than the
algorithm with both balancing and path compression.

2.2 The nonsymmetric algorithm

We now shift our attention to how T(ATA) can be computed from Struct[A]
rather than Struct[ATA].

Every off-diagonal nonzero entry in ATA, and hence every edge of G(ATA),
corresponds to an ancestor-descendant pair in T(ATA) [19, 21, 26]. In particular,
if (,7) and (j, k) are two edges in G(ATA) with i < j < k, then vertices 7, j, and
k must belong to the unique path joining ¢ and &, with ¢ being the descendant
of both j and k.

For 1 <7 < m, let the column indices of the first and last nonzeros in row A;,
be denoted by f; and ¢;, respectively:

fi min{j | j € Struct[A;.]},
L; = max{j|Jj € Struct[A;.]}.

Since Struct[A;.] is a clique in G(ATA), it follows from the preceding discussion
that Struct[A;.] must consist of a subset of vertices on the path in T(ATA) from
fi up to £;.

The relationship between the row structures of A and the paths in T(ATA)
provides a way to avoid computation of Struct[ATA] from Struct[A]. The key
observation follows. Choose j € Struct[A;,] such that j # f;, and let k& be the
immediate predecessor of j in Struct[A;.]. Since each vertex k' < k taken from
Struct[A;.] is a descendant of k in T(ATA), there is no need for the elimination
tree algorithm to search any such edge (&', 7), even though (&', 7) is a nonzero
entry in ATA. Instead it needs to examine only edges joining a vertex with its
immediate predecessor in a row list Struct[A;.].

We are essentially using the symmetric elimination tree algorithm, not on the
graph of ATA, but on a graph that has a path for every row of A. This graph
has the same elimination tree as ATA but is only as large as A. The details are
shown in Figure 2.2.

The vector parent 1s the parent function of the column elimination tree al-
gorithm. Array element prev_col(i) records the predecessor of the next vertex
in Struct[A;.] to be processed. As in the elimination tree algorithm, when the
root r of a subtree containing & is found, path compression can be employed to
reduce the time required to perform tree traversals. Thus, the column elimina-
tion tree algorithm has time complexity O(]A4| (] A[, n)) if balancing and path
compression are both used.

ROW AND COLUMN COUNTS FOR SPARSE QR AND LU 7

for column 5 — 1 to n do
parent(y) — j; prev_col(j) — 0;
end for
for column 5 — 1 to n do
for row i € Struct[A,;] do
k — prev_col(7);
if k # 0 then
/¥ fi<i®/
find root r of the current tree that contains k;
if r # j then
parent(r) — j;
end if
end if
/* record j as predecessor of next vertex in Struct[A4;.] */
prev_col(i) — j;
end for
end for

Figure 2.2: Algorithm for computing the column elimination tree T(ATA) from
Struct[A].

3 Row and column counts for sparse)R factorization

We begin by reviewing the efficient algorithms to compute row and column
counts for Cholesky factorization [16]. Then we modify these algorithms for
sparse () R factorization, so that they work on Struct[A] rather than Struct[ATA].
Recall that (for square A) the counts for H and R are also the best possible a
priori bounds on the counts for the partial-pivoting factors L and U respectively.

3.1 Review: Row and column counts for Cholesky factors

This material is condensed from Gilbert, Ng, and Peyton [16], which has a
much more leisurely explanation of the algorithms and why they work. Here we
just describe the details that will later need to be modified in order to use A
rather than ATA. The reader should glean two key points from this subsection:
first, the Cholesky row counts are derived by summing the lengths of certain
paths in the elimination tree; second, the Cholesky column counts are derived
by summing certain vertex weights in the tree. The paths and the vertex weights
are both defined in terms of the leaves (and possibly other vertices) of the “row
subtrees”, and of certain least common ancestors of those vertices. The modi-
fications for sparse QR factorization will consist of methods for identifying the
crucial subtrees, leaves, and ancestors for H and R rather than for the Cholesky
factor, and for doing so from A rather than from ATA.

In this section, let B be an arbitrary sparse n x n symmetric positive definite
matrix, and let Lp be its (lower triangular) Cholesky factor. Let T'(B) be the
elimination tree of B. Recall [21] that the nonzeros in any row ¢ of Lp induce a

8 J. R. GILBERT AND X. S. LI AND E. G. NG AND B. W. PEYTON

connected subgraph of T'(B) called the i*" row subtree and written T;(B); and
that every leaf of T;(B) corresponds to a nonzero column in row ¢ of B.

Determining the Cholesky row counts from T'(B) is straightforward. The i®
row count of Lp is simply the number of vertices in the i*® row subtree T;(B),
which we can get by counting the edges in T;(B). To get the desired running time
we must count those edges in time that depends only on the number of nonzeros
in row ¢ of B, not on the size of T;(B). The solution is as follows. Assume that
T(B) is postordered. Then (for each @) the edges of T;(B) are partitioned into
disjoint paths by the vertices corresponding to the subdiagonal nonzeros in row
t of B, together with the least common ancestors of consecutive pairs of such
vertices. Thus, the i*" row count can be obtained by computing the sum of
the lengths of these disjoint paths. This can be implemented in O(|B|a(| B, n))
time, which 1s dominated by the running time of the disjoint set union algorithm
used to find the least common ancestors [27].

Determining the column counts is more complicated. The ;' column count is
the number of row subtrees that contain vertex j. We could simply traverse every
row subtree, keeping a count for each j; but that would take time proportional to
the total size of the Cholesky factor. The efficient algorithm counts all the row
subtrees containing each j simultaneously in a single traversal of all of T'(B),
using vertex weights defined in terms of the same least common ancestors as
above.

For each pair of vertices ¢ and j (with 1 < 4,j < n), define the characteristic

function x by
o _) 1 if(Lp)i #0,
xi(7) = { 0 otherwise.
Define the vertex weight function w by

wi(j) = x:i(J) — oo k),
children & of y

and
wi) = 3 wils)
all ¢

With the convention that the descendants of j include j, the definition of w;(j)
implies that

(@) =wi)+ > k)= > wi(s) .

children & of y descendants s of j
Therefore, the j® column count, denoted by cc(j), is given by
cei) = D_xili) =) > wl= Y,)
all ¢ all ¢+ descendants s of 3 descendants s of j

That is, the j*P column count is precisely the sum of the weights of the descen-
dants of j in T'(B). If we can compute the weights, computing the column counts
involves merely accumulating the weights from leaves to the roots in T(B).

ROW AND COLUMN COUNTS FOR SPARSE QR AND LU 9

The vertex weights w are not difficult to compute. Suppose that vertex j has
d children in the i*" row subtree. Then by definition

wi(j) = x:(J) — d,
and the only nonzero values of w;(j) are

-1, if j is the parent of ¢ in T'(B),
wi(j) =4 1, if j is a leaf of T;(B),
1—d, if j belongs to T;(B) and has d > 1 children in T;(B).

The vertices j for which w;(j) # 0 are easy to identify. By definition, every
leaf of T;(B) corresponds to a nonzero entry in row ¢ of B. Every vertex in
T;(B) with more than one child in 7;(B) is the least common ancestor of a pair
of consecutive nonzero entries in row ¢ of B, and hence is one of the vertices
identified in the row count algorithm above.

In summary, we compute the vertex weights by processing the row subtrees
T;(B) one by one, and adding each nonzero contribution w;(j) from the i*" row
subtree to the appropriate w(j). After computing all the w(j)’s, we obtain the
column counts by traversing T'(B) from its leaves to its roots.

Again, we refer the reader to the paper [16] for the details of the row and
column counts algorithm for Cholesky factors.

3.2 Row and column counts of the Householder matriz

Computing row and column counts of the m x n Householder matrix H is
similar to computing Cholesky counts, because the structure of H has a tree-
based characterization similar to (actually, simpler than) that of a Cholesky
factor. To see why, we need the following result, which is due to George, Liu,
and Ng.

THEOREM 3.1 (ROW STRUCTURE OF H). [12] Let T = T(ATA) be the column
elimination tree of A. Let f; denote the column index of the first nonzero entry
in row Az, Then Struct[H;.] consists of all the vertices on the path in T from
fi to either i or the root of T, whichever is smaller. (Vertex i is an ancestor of
fi in T because Ay £ 0. If T is not connected, the root in question is that of the
component containing f;.)

The paths in this theorem play the role of the row subtrees in the Cholesky
count algorithms. Since now each “subtree” consists of a single path joining a
descendant to an ancestor, the algorithms are simpler. Each row count is just
the length of the corresponding path in vertices, which is one more than the
difference between the levels of its endpoints. Thus all the row counts can be
computed in O(|A]) time from T and A.

The column counts for H can also be computed just as in the Cholesky case
described above, but the weights are simpler because each row subtree (path)
has only one leaf. Using the notation in Section 3.1, w;(j) is nonzero if and only
if either j is the parent of the last vertex of the path for row ¢ of H (i.e., the
root of the i®" row subtree), in which case w;(j) = —1; or j is the leaf of the
path for row ¢ of I (i.e., j = fi), in which case w;(j) = 1.

10 J. R. GILBERT AND X. S. LI AND E. G. NG AND B. W. PEYTON

The complete column-oriented algorithm to compute the row and column
counts of the Householder matrix H (denoted by rcg and cegr) appears in Fig-
ure 3.1. In this algorithm, the subtree roots r(¢) can be computed as part
of the elimination tree algorithm (Section 2). Computing all the vertex levels
level(§) (distances to the root) takes O(n) time. The f;’s can be determined
from Struct[A] in O(]A4|) time. The set first[j] contains each row whose first
nonzero entry is in column j; all those sets can be constructed from Struct[A] in
O(]A|) time. Thus the overall running time of the algorithm is O(|A]).

Sort the columns of A by a postorder of T(ATA);
Compute level(j) as the distance from j to the root of j’s subtree, for 1 < j < n;
Compute f; as the column index of the first nonzero in row A;«, for 1 <1 <m;
Compute first[j] = {¢| fi = j}, for 1 < j < m;
Let 7(7) be the smaller of ¢ or the root of the subtree containing f;;
w(j) —0,for 1 <j<m;
for column 5 — 1 to n do
for 1 € first[7] do
reg(i) — 1+ level(j) — level(r(2));
w(y) — w(y)+ 1; /* for the leaf */
if (1) is not the root of a subtree then
w(parent(r(1))) — w(parent(r(z))) — 1; /* for the parent */
end if
end for
end for
cer(y) — w(y), for 1 < j < m;
for y—1ton—1do
if 7 is not the root of a subtree then
ccr(parent(3)) — cca(parent(y)) + cen(j);
end if
end for

Figure 3.1: The column-oriented algorithm to compute row and column counts
of the Householder matrix.

3.8 Supernodal structure of H and L

A supernode of a lower triangular factor of a matrix is a block of consecutive
columns that have identical nonzero structures, except that the square subblock
on the diagonal is a full triangle. Many factorization algorithms gain efficiency
by using high-level BLAS—that is, optimized dense matrix kernels—to operate
on supernodes as dense blocks [1, 3].

We can determine the supernodal structure of the Householder matrix H,
which gives a useful bound on the supernodal structure of the partial pivoting
factor L, during the row and column count algorithm in Figure 3.1. Specifically,
we identify the fundamental supernodes of H. The vertices corresponding to
columns of a supernode form a path in the column elimination tree T(ATA). A

ROW AND COLUMN COUNTS FOR SPARSE QR AND LU 11

fundamental supernode i1s a supernode that is maximal subject to the property
that every vertex on that path, with the possible exception of the first one, has
exactly one child in the tree. See Ng and Peyton [23] for more on fundamental
supernodes.

The following theorem, which is due to Li [18], characterizes the fundamental
supernodes of H in terms of the column elimination tree.

THEOREM 3.2 (SUPERNODAL STRUCTURE OF H). [18] Let T = T(ATA) be
the column elimination tree of A, and assume that T s postordered. Let H be
the Householder matriz. Vertex j is the first vertex in a fundamental supernode
of H if and only if vertex j has two or more children wn T, or j is the column
index of the first nonzero entry in some row of A.

Proor. If vertex j has two or more children in 7', then it is the first vertex of
a fundamental supernode by definition. Suppose, then, that vertex j has only
one child. Since T is postordered, the child is j — 1.

“if” part: Let A;; be the first nonzero entry in row ¢ of A. Theorem 3.1
implies that j € Struct[H;.] and j — 1 ¢ Struct[H;.]. Therefore Struct[H,;] Z
Struct[H. j_1]; thus column j must begin a new supernode.

“only if” part: Suppose j is the first column of its fundamental supernode.
Then Struct[H.;] € Struct[H, ;_1]. Hence there exists a row ¢ such that j —1 ¢
Struct[H;.] but j € Struct[H;.]. If there is a k& < j — 1 such that A;; # 0, then
J — 1 € Struct[H;.], because j — 1 is on the path in T from k to j € Struct[H;.],
contrary to our assumption that j — 1 & Struct[H;.]. Therefore we must have
Aip # 0 for all k£ < j— 1. Since j € Struct[H;.] and moreover A;, # 0 for
k < j—1, it follows by Theorem 3.1 that A;; # 0; hence, A4;; is the first nonzero
of row 7 of A. O

It is straightforward to check the conditions of this theorem during the House-
holder counts algorithm, thus determining the supernodal partition of H.

Precomputing the fundamental supernodes of H can be useful in implement-
ing partial pivoting on some parallel machines. Note that every fundamental
supernode of I is contained in a fundamental supernode of H. This is because
the first vertex of a fundamental supernode of H is necessarily the first nonzero
column index in some row of A (as in the proof of Theorem 3.2), and therefore
will also be the first nonzero column index in some row of L.

In our shared-memory parallel partial pivoting code SuperLU_-MT [4, 18], it
is useful to preallocate storage for a supernode of L before computing it. This
is because each supernode may be divided into panels whose computation is as-
signed to different processors. If panels are stored in the order they are computed
then panels from supernodes in different subtrees of 7" may end up intermingled,
preventing the use of dense matrix kernels on entire supernodes. Instead, we
allocate storage for a supernode of H at a time, and use that storage for all the
enclosed supernodes of L. It is then impossible for a panel of one supernode to
be stored between two panels of another supernode. (The SuperLU_MT code
also refines this upper bound on a supernode’s storage dynamically during the
LU factorization [18].)

12 J. R. GILBERT AND X. S. LI AND E. G. NG AND B. W. PEYTON

3.4 Row and column counts of the upper triangular factor

We turn our attention to the upper triangular factor R in the @ R factorization
of A. This R is the transpose of the Cholesky factor of ATA [10]. Thus we could
simply take B = ATA in the Cholesky count algorithm (Section 3.1). The only
difficulty is that ATA may have many more nonzeros than A, so the running
time might be far from linear in |A]|.

Therefore, instead of taking B = ATA, we choose a B that has at most |A|
nonzeros but whose symbolic Cholesky factor has the same structure as the
Cholesky factor of ATA. Specifically, for each row of A, we include in the graph
of B a star, with edges from the first nonzero column in that row to all the others.
Using a clique instead of a star for each row of A would yield the structure of
ATA. However, the symbolic Cholesky factors of B and of ATA are the same,
because elimination of the first vertex in a row star of B causes fill among all
the other vertices in that star. (A path, as we used in Section 2, would not in
general lead to the same symbolic Cholesky factor.)

Here are the details of the computation. We assume that the column elim-
ination tree T(B) = T(ATA) has been formed by the algorithm in Section 2,
and that its vertices have been postordered. We do not literally form B; we
just modify the Cholesky counts algorithm [16, Fig. 3] to extract the necessary
information from A. In particular, that algorithm must identify in T(ATA) the
leaves of the row subtrees Tj(ATA) and their least common ancestors.

Consider the row subtree Tj(ATA). Any leaf k # j of that subtree has k < j
and is adjacent to j in G(ATA). Since G(ATA) is the union of one clique for each
row of A, there must be some row ¢ of A in which both A;;, and A4;; are nonzero.
In fact, A;i 1s the first nonzero in row i of A; otherwise, the first nonzero would
be a proper descendant of k in 7} (ATA) and k would not be a leaf of the subtree.

As above, write f; as the column index of the first nonzero in row z of A. We
conclude that every leaf of a row subtree is an f;. (Not every f; need be a leaf
of a row subtree.) Consequently, for each row ¢ of A, it suffices for the Cholesky
count algorithm to examine only the subset

{(fi,4) |j € Struct[A;.] and j > fi}

of the edges of ATA—that is, the edges of B. There are fewer than |A| such
edges, so the running time is O(]A|a(|A], n)) as desired.

Figure 3.2 gives the detailed algorithm to find rcg and ccg, the row and column
counts for R. The algorithm is column-oriented, and processes the first-vertex
sets first[j] = {¢ | f = j} in postorder. (These correspond to the centers of the
stars in B.) For each first-vertex set first[j], the algorithm needs to examine
the higher-numbered adjacent vertices in G(ATA), that is, u € Struct[A;,] with
u > f;, for all ¢ such that f; = j. We therefore define the higher adjacency set
hadj _f[j] for the first vertex set first[j] as follows:

hadj _f[j] := U {u | u € Struct[A;.],u > j} .
1€ first[j]

ROW AND COLUMN COUNTS FOR SPARSE QR AND LU 13

This is the set of vertices in stars of B (or cliques of ATA) whose center (or
lowest-numbered vertex) is j.

The algorithm in Figure 3.2 includes one further optimization, as used by
Gilbert, Ng, and Peyton [16]. The one-line test

if fst_desc(j) > prev_nbr(u) then

discards some edges that do not affect the result, leaving only a minimal graph
called the skeleton graph [19]. The resulting algorithm examines only those edges
(fi,J) such that f; is a leaf in the row subtree of j. If ¢ is the number of edges
in the skeleton graph (which is at most |A| and often much smaller), the overall
time complexity is O(JA| + e~ a(e™, n)).

3.5 Combined algorithm

Since the algorithms for H (Figure 3.1) and R (Figure 3.2) both process
Struct[A] columnwise, and they use several common data structures, it is straight-
forward to combine the two algorithms into a single-pass algorithm that com-
putes the row and column counts for both H and R. The timings we report in
the next section are for this combined algorithm.

Our implementation theoretically has time complexity O(]A|+e~ logn) rather
than O(|A] + e~ a(e™,n)), because we implement the disjoint set union algo-
rithms without balancing. Gilbert, Ng, and Peyton [16] found this variant to be
the fastest in practice for the Cholesky count algorithms, just as Liu [21] did for
symmetric elimination tree algorithms.

4 Numerical results

In this section, we present the performance of the new algorithms on a vari-
ety of square and rectangular matrices, as described in Table 4.1. The square
matrices are available from the Matrix Market? or the University of Florida.?
The first three term-document matrices are available from the Cornell SMART
system.* Hongyuan Zha provided matrix NEWSGROUP; we removed its dense
rows in our test. Yin Zhang provided the three matrices from optimization. We
performed our experiments on an IBM RS/6000-590 with a CPU clock rate of
66.5 MHz. We used the AIX xlc compiler with -03 optimization.

Table 4.2 reports results for the square matrices. We show the time to compute
the column elimination tree and the QR counts using the algorithms in Sections
2 and 3. For comparison, we show the time to form Struct[A7A] explicitly, and
to compute the elimination tree and Cholesky counts from that structure. We
also show the time for LU factorization with partial pivoting as implemented
in SuperLU [3]. The columns of A are preordered using minimum degree on
Struct[ATA] before the factorization.

The algorithm from Section 2 to compute the column elimination tree T'(ATA)
from Struct[A] is usually faster than the older algorithm to compute the tree

2http://math nist.gov/MatrixMarket /
Shttp://www.cis.ufl.edu/~davis /sparse/
*ftp.cs.cornell.edu:pub/smart /

14 J. R. GILBERT AND X. S. LI AND E. G. NG AND B. W. PEYTON

given Struct[ATA]. When we include the time to form Struct[A7A] in the latter,
we find that the newer algorithm (computing T'(ATA) directly from Struct[A])
is much faster than the older one (computing T(ATA) from Struct[A] by way of
Struct[ATA]); the speedups range from 1.1 to 266 fold, with an average of 34.
This shows that forming and manipulating Struct[ATA] is often very expensive
compared to the alternatives.

The runtime of the QR count algorithm is comparable to that of the column
elimination tree algorithm, as we might expect since both are dominated by
disjoint set union operations. In any setting where the column elimination tree
is desired, computing row and column counts adds little extra time.

The last two columns of the table show that the row and column count al-
gorithm is much faster than the numerical LU factorization algorithm. For the
largest matrices, the QR count algorithm takes less than 1% of the LU factoriza-
tion time. This demonstrates that if static data structures are desirable in LU
factorization (e.g., on shared-memory parallel machines), the storage allocation
phase based on the QR counts is very fast.

Table 4.3 reports runtimes for the rectangular matrices. Again, the new col-
umn elimination tree algorithm is much faster than the one that forms ATA,
with speedups ranging from 3 to 87 fold, and the QR row and column count
algorithm is comparable in cost to the column elimination tree algorithm.

5 Conclusion

In this paper we have presented new fast algorithms to compute parameters
of the nonzero structure of the QR factorization of a sparse matrix, including
the row and column counts of the Householder matrix and the row and column
counts of the upper triangular factor. The new algorithms are modifications
of an earlier algorithm for computing row and column counts of a Cholesky
factor [16]. Our new algorithms require a fast method to compute the column
elimination tree without forming ATA; we give the first detailed description of
such a method.

All these algorithms run in time almost linear in |A| rather than in time
almost linear in |[ATA|. Numerical experiments confirm that the new algorithms
are efficient and practical.

REFERENCES
1. C. C. Ashcraft, R. G. Grimes, J. G. Lewis, B. W. Peyton, and H. D. Si-

mon. Progress in sparse matriz methods for large linear systems on vec-
tor supercomputers. International Journal of Supercomputer Applications,
1(4):10-30, 1987.

2. T. F. Coleman, A. Edenbrandt, and J. R. Gilbert. Predicting fill for sparse
orthogonal factorization. J. ACM, 33:517-532, 1986.

3. J. W. Demmel, S. C. Fisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A
supernodal approach to sparse partial piwoting. STAM J. Matrix Anal. Appl.,
20(3):720-755, 1999.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

ROW AND COLUMN COUNTS FOR SPARSE QR AND LU 15

J. W. Demmel, J. R. Gilbert, and X. S. Li. An asynchronous parallel su-
pernodal algorithm for sparse Gaussian elimination. SIAM J. Matrix Anal.

Appl., 20(4):915-952, 1999.

. 1. S. Duff. Algorithm 575. Permutations for a zero-free diagonal. ACM

Trans. Math. Software, 7:387-390, 1981.

. 1.S. Duff. On algorithms for obtaining a mazimum transversal. ACM Trans.

Math. Software, 7:315-330, 1981.

I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Ma-
trices. Oxford University Press, Oxford, England, 1987.

. 1. S. Duff and T. Wiberg. Implementations of O(nl/zr) assignment algo-

rithms. ACM Trans. Math. Software, pages 267-287, 1988.

. A. George, J. R. Gilbert, and J. W. H. Liu. Graph Theory and Sparse Matrix

Computation. Springer-Verlag, 1993.

A. George and M. T. Heath. Solution of sparse linear least squares problems
using Givens rotations. Linear Algebra Appl., 34:69-83, 1980.

A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive
Definite Systems. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.

A. George, J. W. H. Liu, and E. G. Ng. A data structure for sparse QR and
LU factors. STAM J. Sci. Statist. Comput.; 9:100-121, 1988.

A. George and E. G. Ng. Symbolic factorization for sparse Gaussian elimi-
nation with partial pivoting. STAM J. Sci. Statist. Comput., 8:877-898, 1987.

J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in Matlab: Design
and itmplementation. STAM J. Matrix Anal. Appl., 13:333-356, 1992.

J. R. Gilbert and E. G. Ng. Predicting structure in nonsymmetric sparse
matriz factorizations. In George et al. [9].

J. R. Gilbert, E. G. Ng, and B. W. Peyton. An efficient algorithm to compute
row and column counts for sparse Cholesky factorization. SIAM J. Matrix

Anal. Appl.; 15:1075-1091, 1994.

D. Hare, C. Johnson, D. Olesky, and P. van den Driessche. Sparsity analysis
of the QR factorization. SIAM J. Matrix Anal. Appl., 14:665-669, 1993.

X.S. Li. Sparse Gaussian elimination on high performance computers. Tech-
nical Report UCB//CSD-96-919, Computer Science Division, U.C. Berkeley,
September 1996. Ph.D. dissertation.

J. W. Liu. A compact row storage scheme for Cholesky factors using elimi-
nation trees. ACM Trans. Math. Software, 12:127-148, 1986.

J. W.H. Liu. The role of elimination trees in sparse factorization. Technical
Report CS-87-12, Dept. of Computer Science, York University, 1987. This is
a longer version of Liu [21].

J. W. H. Liu. The role of elimination trees in sparse factorization. STAM J.
Matrix Anal. Appl., 11:134-172, 1990.

16

22.

23.

24.

25.

26.

27.

J. R. GILBERT AND X. S. LI AND E. G. NG AND B. W. PEYTON

J. W. H. Liu, E. G. Ng, and B. W. Peyton. On finding supernodes for sparse
matriz computations. STAM J. Matrix Anal. Appl., 14:242-252 1993.

E. G. Ng and B. W. Peyton. Block sparse Cholesky algorithms on advanced
uniprocessor computers. SIAM J. Sci. Comput., 14:1034-1056, 1993.

E. G. Ng and B. W. Peyton. Some results on structure prediction in sparse
QR factorization. STAM J. Matrix Anal. Appl., 17:443-459, 1996.

A. Pothen and C. J. Fan. Computing the block triangular form of a sparse
matriz. ACM Trans. Math. Software, 16:303-324, 1990.

R. Schreiber. A new implementation of sparse Gaussian elimination. ACM

Trans. Math. Software, 8:256-276, 1982.

R. E. Tarjan. Efficiency of a good but not linear set union algorithm. J.
ACM, 22:215-225, 1975.

ROW AND COLUMN COUNTS FOR SPARSE QR AND LU 17

Sort the columns of A by a postorder of T(ATA);
Compute level(y), the distance from j to the root of j’s subtree, for 1 < j < n;
Compute f;, the column index of the first nonzero in row A;., for 1 <1 < m;
Compute hadj_f[j], for 1 < j < n;
prev_f(j) — 0, for 1 < j < m;
prev_nbr(j) — 0, for 1 < j < n;
ccr(y) — 1, for 1 < j < m
w(j) — 0, for all nonleaves j in T(ATA);
w(j) — 1, for all leaves j in T(ATA);
for column 5 — 1 to n do
if 7 is not the root of a subtree then
w(parent(y)) — w(parent(y)) — 1;
end if
for u € hadj_f[j] do
if fst_desc(j) > prev_nbr(u) then
/* 7 is a leaf of the row subtree of u */
w(i) — w(j) + 1
p-leaf — prev_f(u);
if p_leaf = 0 then
ccr(u) — cer(u) + level(y) — level(u);
else
g — FIND(pleaf);
ccr(u) — cer(u) + level(y) — level(q);
w(g) — w(g) — 1;
end if
prevf(u) — 5
end if
prev_nbr(u) — j;
end for
UNION(j, parent(y);
end for
rer(y) — w(y), for 1 <5 < m;
for y—1ton—1do
if 7 is not the root of a subtree then
rer(parent(y)) — rer(parent(j)) + rer(7);
end if
end for

Figure 3.2: The column-oriented algorithm to compute row and column counts
of the upper triangular matrix in orthogonal factorization.

18 J. R. GILBERT AND X. S. LI AND E. G. NG AND B. W. PEYTON

Table 4.1: Test matrices.

Square Matrices

Matrix n |A] [A]/n |ATA| Discipline
MEMPLUS 17,758 99,147 5.6 2,552,314 | circuit simulation
GEMATI11 4,929 33,185 6.7 78,676 | electrical power
Rpistl 4,134 9,408 2.3 487,160 | chemical engineering
ORANIETS 2,529 90,158 35.6 1,858,894 | economics
McrE 765 24,382 31.8 144,976 | astrophysics
LNSP3937 3,937 25,407 6.5 97,736 | fluid flow
LNs3937 3,937 25,407 6.5 97,736 | fluid flow
SHERMANDH 3,312 20,793 6.3 86,454 | oil reservoir modeling
JPwH991 991 6,027 6.1 24,150 | circuit physics
SHERMAN3 5,005 20,033 4.0 54,904 | oil reservoir modeling
ORSREG1 2,205 14,133 6.4 43,994 | oil reservoir simulation
SAYLRA 3,564 22,316 6.3 70,456 | oil reservoir modeling
SHYY161 76,480 | 329,762 4.3 808,656 | fluid flow
GOODWIN 7,320 324,772 44.4 1,768,680 | fluid mechanics
VENKATO1 62,424 | 1,717,792 27.5 4,557,544 | flow simulation
INACCURA 16,146 | 1,015,156 62.9 3,372,106 | CFD
AF23560 23,560 460,598 19.6 2,414,716 | airfoil simulation
RAEFSKY3 21,200 | 1,488,768 70.2 4,032,176 | fluid turbulence
Ex11 16,614 | 1,096,948 66.0 | 4,501,260 | fluid flow
WanG3 26,064 177,168 6.8 588,958 | device simulation
RAEFSKY4 19,779 | 1,316,789 66.6 5,281,844 | buckling problem
Av41092 41,092 | 1,683,902 41.0 | 26,961,314 | 2D PDE

Rectangular Matrices
Matrix m n |A| |ATA| Discipline
CRAN 2,331 1,625 74,902 2,327,086 | term-document
MED 5,504 1,063 51,389 765,978 | term-document
NprL 11,529 4,322 225,634 1,548,536 | term-document
NEWSGROUP | 104,260 19,709 | 1,573,790 | 167,754,124 | term-document
DrFL001 12,230 6,071 35,632 76,196 | optimization
STOCFOR3 23,541 16,675 72,721 206,720 | optimization
05A-60 243,209 10,243 | 849,356 510,138 | optimization

ROW AND COLUMN COUNTS FOR SPARSE QR AND LU 19

Table 4.2: Running time in seconds of several algorithms for square matrices
on the IBM RS/6000-590: forming ATA, computing the etree, computing the
Cholesky counts of ATA, computing the QR counts, and sparse LU factorization.

Based on ATA Based on A

Form | Compute | Cholesky | Compute QR LU
Matrix ATA etree counts etree | counts | factors
MEMPLUS 1.143 0.599 0.519 0.069 0.106 0.57
GEMATI1 0.091 0.021 0.021 0.023 0.030 0.27
Rpistl 0.887 0.114 0.097 0.059 0.054 0.96
ORANIGTR 4.948 0.432 0.367 0.057 0.073 1.11
McrE 0.243 0.041 0.029 0.015 0.015 0.24
LNsp3937 0.073 0.025 0.025 0.019 0.026 1.50
LNs3937 0.073 0.025 0.025 0.018 0.026 1.65
SHERMANDH 0.085 0.021 0.020 0.014 0.019 0.82
JPwH991 0.016 0.006 0.006 0.004 0.006 0.52
SHERMAN3 0.048 0.015 0.017 0.014 0.024 1.37
ORSREG1 0.035 0.011 0.012 0.010 0.014 1.21
SAYLR4 0.055 0.021 0.019 0.017 0.023 2.18
SHYY161 0.699 0.233 0.270 0.241 0.413 25.42
(GOODWIN 4.578 0.426 0.348 0.203 0.165 12.55
VENKATO1 11.853 1.083 0.940 1.077 0.926 42.99
INACCURA 15.220 0.784 0.677 0.628 0.506 67.73
AF23560 2.519 0.573 0.495 0.306 0.344 75.91
RAEFSKY3 24.310 0.937 0.800 0.924 0.698 107.60
Ex11 17.729 1.045 0.885 0.699 0.557 247.05
WaNaG3 0.461 0.153 0.144 0.122 0.174 116.58
RAEFSKY4 21.319 1.238 1.040 0.838 0.656 263.13
Av41092 271.354 7.244 5.356 1.051 1.188 786.94

Table 4.3: Running time in seconds of several algorithms for rectangular matrices
on the IBM RS/6000-590: forming ATA, computing the etree, computing the
Cholesky counts of ATA, computing the QR counts.

Based on ATA Based on A

Form | Compute | Cholesky | Compute QR
Matrix ATA etree counts etree | counts
CRAN 3.099 0.535 0.453 0.046 0.054
MED 0.495 0.177 0.152 0.030 0.038
NpL 1.626 0.38 0.462 0.149 0.200
NEWSGROUP | 206.348 75.731 80.649 3.743 4.982
DrL001 0.064 0.022 0.030 0.023 0.047
STOCFOR3 0.184 0.058 0.086 0.051 0.093
Osa-60 1.516 0.125 0.173 0.492 0.839

